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A B S T R A C T

Arterial spin labeling (ASL) is a relatively new MRI technique that can measure cerebral blood flow, which is of
great importance for the diagnosis of dementia diseases. Besides, this valuable imaging modality does not need
exogenous tracers and has no radiation, which makes it favorable for elder patients. However, ASL data does
lack in many contemporary image-based dementia diseases datasets, which include popular ADNI-1/GO/2/3
datasets. In order to supplement the valuable ASL data, a new Generative adversarial network (GAN)-based
model is proposed to synthesize ASL images in this study. This new model is unique, as the popular variational
auto-encoder (VAE) has been utilized as the generator of the GAN-based model. Hence, a new VAE-GAN
architecture is introduced in this study. In order to demonstrate its superiority, dozens of experiments have
been conducted. Experimental results demonstrate that, this new VAE-GAN model is superior to other state-
of-the-art ASL image synthesis methods, and the accuracy improvement after incorporating synthesized ASL
images from the new model can be as high as 42.41% in dementia diagnosis tasks.
1. Introduction

Dementia denotes a more and more commonly seen type of disease
in the elderly, and its symptoms include but not limit to forgetfulness,
glassy-eyed, dullness of speech, etc. Moreover, dementia will badly
influence the perceptual nerve of patients at the late stage, making
patients lose their normal self-caring ability eventually. According to
the World Health Organization, one of each 20 people over the age
of 65 suffers from the dementia disease. It is also widely acknowledged
that, the dementia disease has become the fourth leading cause of death
in the elderly after the cardiovascular disease, the cerebrovascular
disease and the malignant tumor, for the time being. Therefore, the
accurate diagnosis of dementia is important.

In order to fulfill the clinical diagnosis of dementia, clinicians often
take the cortical atrophy, the ventricular enlargement, the thickness,
the volume of medial temporal lobe decrease, the hippocampal cortical
reduction, etc., as bio-markers. Also, various imaging tools includ-
ing MRI (Magnetic Resonance Imaging), CT (Computed Tomography),
SPECT (Single-Photon Emission Computed Tomography), PET (Positron
Emission Tomography), have been widely incorporated in the task of
dementia diagnosis. It is also valuable to point out that, ASL (Arterial
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Spin Labeling) is a relatively new MRI technique, which begins to
attract more and more research attention in dementia studies in recent
years.

Generally speaking, ASL is one and the only one perfusion technol-
ogy that can be compared with the gold standard 15𝑂-PET in principle,
with hydrogen of free diffusion as endogenous contrast agent [1]. Since
ASL does not need exogenous tracers and has no radiation, it has been
widely incorporated for measuring the perfusion signal. Recent studies
have demonstrated that, the reduction of regional blood perfusion in
brain tissues can be utilized as an important factor in the pathogen-
esis of the dementia disease. The cerebral blood flow, the cerebral
blood volume and the oxygen metabolism rate can all be obtained
from ASL images, and these metrics are significant in the dementia
diagnosis [2]. Although ASL has many advantages as mentioned above,
it does lack in many well-known image-based dementia datasets. For
instance, the ADNI-1/GO/2/3 datasets include sMRI (structural MRI),
DTI-MRI (Diffusion Tensor Imaging-MRI), PET and resting-state fMRI
(functional MRI) are incorporated as their main imaging modalities [3].
However, ASL images are not among them. In order to mitigate the
dilemma, a series of recent studies dedicate to synthesizing ASL images
to supplement the ‘‘missing’’ modality in these well-known datasets.
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It is also necessary to point out that, the synthesis from one com-
monly seen modality (e.g., sMRI) to ASL is often considered as a sophis-
ticated and non-linear mapping. In order to obtain such a mapping,
deep learning techniques are often incorporated. Recent studies have
demonstrated that, various modalities including MRI images [4–12],
PET images [13–15], CT images [16], ultrasound images [17], breast X-
ray images [18,19], eye images [20–23], endoscopic images [24], etc.,
can be successfully synthesized. These medical image synthesis studies
are important, as they can provide an alternative way to obtain medical
images that are not acquired beforehand. Furthermore, medical image
synthesis is also important for realizing the training of computer-aided
tools that should often be driven by ample training data.

In this study, the synthesis task from sMRI to ASL images is empha-
sized. Technically, a new GAN (Generative Adversarial Network)-based
model is proposed, and it incorporates the famous VAE (Variational
Auto-Encoder) as the generator of the GAN model for synthesizing
medical images. Advantages of this new GAN-based model include
that, it can effectively alleviate the dilemma of unstable trainings that
are commonly seen in contemporary GAN models, and the quality of
synthesized ASL images is high. Experimental results also demonstrate
that, the new GAN model is superior to other recently proposed models
for ASL image synthesis. Also, synthesized ASL images obtained by
the new GAN model can significantly improve the dementia diagnosis
accuracy by 42.41% based on datasets in this study.

The organization of the paper is described as follows. In Section 2,
representative studies that are published in recent years in the field of
medical image synthesis are reviewed. Section 3 elaborates technical
details of the new model in this study. Section 4 conducts a series
of experiments and their corresponding comprehensive analyses. The
superiority of the new model is suggested, therein. The conclusion of
this study is drawn in Section 5.

2. Related works

As mentioned above, the task of medical image synthesis can be
considered as to find a good mapping, which is capable to convent the
source image into the target image. Since this mapping is sophisticated
and often non-linear, deep learning models that are capable to implic-
itly represent such a sophisticated and non-linear mapping are often
relied on. Generally speaking, the GAN model and the VAE model are
two of the most commonly utilized models in image synthesis task.
Technically, for the original GAN model [25], it is often composed
of a generator and a discriminator. The role of the generator is to
synthesize images, while the role of the discriminator is to discern
synthesized images from real images. When the above competition
continues, the performance of both the generator and the discriminator
can be improved. In this way, synthesized images obtained from the
GAN model can become more and more ‘‘real’’. For the original VAE
model [26], its architecture is illustrated in Fig. 1, where 𝑋 denotes
the input image; 𝑍 ∼ 𝑁(0, 1) represents the latent representation
of 𝑋 following a Gaussian distribution (with the mean of 0 and the
variance of 1); 𝑋′ indicates the generated/synthesized image. It is
also necessary to point out that, the VAE model is often composed of
an encoder and a decoder, in which the encoder aims to encode the
input image 𝑋 to generate the latent representation 𝑍. The decoder
tries to reconstruct the latent representation 𝑍 into new image 𝑋′.
The advantage of the original VAE model is that, its training is not
prone to collapse. However, the disadvantage of the original VAE model
is also obvious, as its synthesized images can become blurry. It is
also important to highlight that, the original GAN model is capable
to synthesize images with quality details, but its training is widely
acknowledged to be quite unstable. Hence, characteristics of these two
models can be complementary.

Representative studies in medical image synthesis based on GAN
techniques that are proposed in recent years are introduced and dis-
cussed as follows. Guibas et al. proposed a Dual GAN in [27], and its
2

Fig. 1. The architecture of the original variational auto-encoder.

image synthesis task was divided into two stages, i.e., the geometry
stage and the photorealism stage. The first stage was used to synthesize
the geometric structure of the gray-scale retinal fundi images, and
the second stage was to synthesize the real and color retinal fundi
images. In [28], Emami et al. proposed a new cGAN network to
synthesize CT images from MR images. MR images were added to
both the generator and the discriminator. Experiments demonstrated
that, the original cGAN [29] model is more suitable for cross-modal
medical image translation tasks. Harms et al. incorporated the cycle-
GAN model to synthesize high-quality CBCT images and integrated
the concept of the popular residual block into the new cycle-GAN
model, which was named as res-cycle-GAN [30]. In order to minimize
the potential health risks caused by inherent tracer radiation within
PET scans, Wang et al. proposed a locality adaptive multi-modality
generative adversarial network (LA-GANs) in [31], whose main task is
to synthesize full-dose high quality PET images from low-dose ones.

Besides the above-mentioned studies that fulfill image synthesis
based on a variety of medical image modalities, the ASL image is
also emphasized for the synthesis purpose in recent years. In [32], a
novel unbalanced deep discriminant learning-based network equipped
with residual network-based sub-structures was proposed to realize the
synthesis of ASL images from sMRI images. It was also the first attempt
to synthesize ASL images. This work synthesizes ASL images from the
perspective of the global image plane, while other successive studies
try to fulfill the synthesis task from the perspective of both the global
image plane and the local image regions. In [33], a novel locally-
constrained WGAN-GP ensemble was introduced, and diverse local
constraints were incorporated. Furthermore, the GMM-based noise was
generated from the Glow [34] model, and a WGAN-GP-based network
was proposed in [35] which is believed to better reflect the char-
acteristics of heterogeneity commonly seen in medical images. Also,
an improved capsule-based network was proposed to synthesize ASL
images in [36]. The advantage of incorporating capsule networks in
medical image synthesis tasks is that, the capsule network does not
adopt pooling operations, and spatial details of images can be better
preserved. To sum up, the original GAN model and other related
techniques (i.e., multiple channels, the exclusion of pooling operations,
the ensemble model, the multi-Gaussian-distributed noise generation,
etc.) have been adopted in recent ASL image synthesis studies.

In this study, the synthesis from sMRI images to ASL images is
realized via a new GAN-based model, which incorporates the famous
VAE model into its GAN architecture. In this way, advantages of the
stable training in the VAE model and the high quality of synthesized
outcomes in the GAN model can both be enjoyed. Technical details of
the new model are elaborated in Section 3.

3. Methodology

In this section, technical details of the newly introduced model in
this study are elaborated. The main architecture and the optimization
of the new model are discussed in Sections 3.1, and 3.2, respectively.
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Fig. 2. The main architecture of the new VAE-GAN model in this study.

Fig. 3. Detailed architectures of the encoder, the decoder, and the discriminator of the
new VAE-GAN model.

3.1. The main architecture of the new VAE-GAN model

The main architecture of the new VAE-GAN model is illustrated in
Fig. 2, in which the generator of the new model is realized by the VAE
model. To be specific, the generator is composed of an encoder and a
decoder. Technically, 𝑋 in Fig. 2 denotes the input of the encoder, and
𝑍 represents the latent feature after encoding. After that, 𝑌 ′ is decoded
from 𝑍, and then fed into the discriminator together with the real data
𝑌 . The above process is inspired by [26], and its mathematical form is
explicitly represented in Eq. (1).

𝑍 ∼ 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋) = 𝑝(𝑍|𝑋), 𝑌 ′ ∼ 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑍) = 𝑞(𝑌 |𝑍) (1)

Moreover, detailed architectures of the encoder, the decoder, and the
discriminator of the new VAE-GAN model are illustrated in Fig. 3, in
which the number of parameters in each individual layer is annotated.
Detailed explanations are as follows.

For the encoder, it adopts the convolution with the size of 3 × 3.
The stride and the padding are set as 2 and 1, respectively. After that,
the conventional batch normalization is added to avoid the notorious
problems of gradient vanishment and gradient explosion. Then, the
popular Relu function is adopted to prevent the overfitting problem.
The above-mentioned flow has been repeated 3 times in the encoder,
so that the number of parameters in the encoder can be effectively
3

reduced. Finally, the full connection layer, the batch normalization
layer and the LeakyRelu layer are further added to the encoder. For
the decoder, it incorporates the ‘‘FC+BN+leakyReLu’’ architecture as
the backbone. Technically, its full connection layer can enhance the
fitting capability of the whole model. The leakyRelu function is incor-
porated here as the activation function, to avoid the ‘‘dead neuron’’
phenomenon commonly seen in deep learning models when the input
is negative. Also, the Tanh function is utilized, in order to speed up the
convergence of the decoder during the training. For the discriminator,
it is also valuable to mention that, the ‘‘FC + LeakyRelu’’ architecture
is utilized as the backbone. This structure has been repeated 2 times
within the discriminator.

3.2. The optimization of the new VAE-GAN model

The energy function to optimize the new VAE-GAN model is repre-
sented in Eq. (2).

𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐺𝐴𝑁 + 𝐿1 + 𝐿𝐾𝐿 (2)

in which 𝐿𝐺𝐴𝑁 represents the energy function of the GAN model; 𝐿1
and 𝐿𝐾𝐿 denote two loss functions for the VAE model. Furthermore,
𝐿𝐺𝐴𝑁 is described in Eq. (3).

𝐿𝐺𝐴𝑁 = E𝑥𝑠∼P𝑠 [𝐷(𝐺(𝑥𝑠))] − E𝑥𝑡∼P𝑡 [𝐷(𝑥𝑡)] + 𝛾E𝑥𝑡∼P𝑡 [(
‖

‖

‖

∇𝑥𝑡
𝐷(𝑥𝑡)

‖

‖

‖2
− 1)2]

(3)

where the idea of the recent WGAN-GP model [37] is inherited. To
be specific, the discriminator loss, the generator loss and the gradient
penalty are explicitly represented on the right hand side of Eq. (3).
Moreover, 𝐷 and 𝐺 in Eq. (3) indicate the discriminator and the
generator of the GAN model, respectively. 𝑥𝑠 in Eq. (3) denotes the
sMRI data in this study, which follows the data distribution P𝑠. 𝑥𝑡 in
Eq. (3) represents the ASL data in this study, which follows the data
distribution P𝑡. Furthermore, 𝑥𝑡 = 𝜖𝑥𝑡 + (1 − 𝜖)𝐺(𝑥𝑠), in which 𝜖 is a
random number between [0, 1]. 𝛾 in Eq. (3) represents the weight of
the gradient penalty.

Additionally, the specific form of 𝐿1 in Eq. (2) is illustrated in
Eq. (4).

𝐿1 =
1
𝑛

𝑛
∑

𝑖=1
𝐻(𝑎𝑖, 𝑎′𝑖) =

1
𝑛

𝑛
∑

𝑖=1
𝐻(𝑎𝑖, 𝑆(𝑠𝑖)) (4)

Detailed explanations of Eq. (4) are as follows. Provided 𝜏1 represents
the set of real sMRI images and 𝜏2 represents the set of real ASL images,
𝑠𝑖 ∈ 𝜏1 and 𝑎𝑖 ∈ 𝜏2 denote real sMRI image 𝑠𝑖 and real ASL image 𝑎𝑖,
respectively. Also, 𝑎′𝑖 of Eq. (4) indicates the synthesized ASL image.
The mapping from the sMRI image to the ASL image is represented by
𝑆(⋅) in Eq. (4), and 𝑎′𝑖 = 𝑆(𝑠𝑖). Moreover, 𝐻 in Eq. (4) is represented by
Eq. (5).

𝐻(𝑥, 𝑦) = 1
𝑘

𝑘
∑

𝑖=1

{

1
2 (𝑥𝑖 − 𝑦𝑖)2, 𝑖𝑓 |𝑥𝑖 − 𝑦𝑖| ≤ 1.
|𝑥𝑖 − 𝑦𝑖| −

1
2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

in which 𝑘 denotes the number of sMRI (or ASL) images. Eqs. (4) and
(5) suggest that, voxel-wise deviations between real ASL images and
synthesized ASL images are incorporated to reflect the ASL synthesis
performance in this study. Also, the smoothed L1 loss is added into the
optimization of the new VAE-GAN model. Since real ASL images usually
contain outliers, the L1 loss can be utilized as a regression loss, rather
than adopting the conventional L2 loss that is more sensitive to outliers.
In addition, since the original L1 loss is not smooth at zero points, the
smoothed L1 loss can be selected as an alternative in this study.

Finally, the explicit form of the last term 𝐿𝐾𝐿 in the right-hand side
of Eq. (2) can be described in Eq. (6).

𝐿 = 𝐷(𝑞(𝑍|𝑌 ) ∥ 𝑝(𝑍|𝑋)) (6)
𝐾𝐿
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where 𝑍 indicates the latent representation; 𝑋 denotes the sMRI data;
𝑌 describes the real ASL data; 𝑝(𝑍|𝑋) and 𝑞(𝑍|𝑌 ) reflect the distribu-
ion of 𝑍 under the condition of the sMRI data 𝑋 and the ASL data 𝑌 ,
espectively. It can be noticed that, Eq. (6) actually aims to measure
he similarity between two distributions 𝑝(𝑍|𝑋) and 𝑞(𝑍|𝑌 ).

. Experimental analyses

In this study, a series of experiments have been conducted and
omprehensive analyses have been fulfilled from the statistical point of
iew. Experiments and their corresponding analyses demonstrate the
uperiority of the newly introduced VAE-GAN model. Details of them
re as follows.

.1. Datasets and data preprocessing

Two datasets are taken into consideration for experimental evalua-
ions in this study. Their descriptions are as follows.

The first dataset is popular in recent ASL image synthesis stud-
es [32,33,35,36]. To be specific, the first dataset contains sMRI im-
ges and their corresponding ASL images. The sMRI images belong
o the high-resolution MPRAGE T1-weighted MRI modality, and the
SL images are obtained by pseudo-continuous ASL scanning without
ackground suppressions. These raw MRI data in this dataset were
ollected using a SIEMENS 3T TIM Trio magnetic resonance scanner,
nd the key acquisition parameters include: label time = 1500 ms,
abel delay = 1500 ms, post-label delay = 1500 ms, time delay =

1500 ms, and post-label delay = 1500 ms. In addition, spatial res-
olutions of sMRI images and ASL images in this dataset are set to
64 × 64 × 21. Moreover, there are 355 patients in this dataset, which
includes 38 patients with Alzheimer’s disease (AD), 185 patients with
mild cognitive impairment (MCI), and 132 patients with non-cognitive
impairment (NCI) as normal controls. The average age of all patients
in this database is 70.56±7.20 years old, and writing informed consents
have been obtained for fulfilling this study.

The second dataset is the ADNI-1 dataset, which is from the well-
known ADNI-1/GO/2/3 datasets family and has been widely utilized in
contemporary image-based dementia diseases studies. It is important to
highlight that, there is no ASL image in the ADNI-1 dataset. Therefore,
the synthesis model learned from the first dataset is incorporated
to synthesize ASL images from available sMRI images of the ADNI-
1 dataset. In this way, ASL images can be supplemented and their
effectiveness in dementia diseases diagnosis can be further investigated.
In order to facilitate the ASL image synthesis, the spatial resolution of
sMRI images in the ADNI-1 dataset is also set as 64 × 64 × 21, which
is consistent with that of sMRI images in the first dataset.

In addition, a series of preprocessing steps are carried out on all
raw data, which include the motion correction, the brain extraction
(skull removal), intra-modality registrations within sMRI images and
ASL images (using the first slice as the reference plane), and the
inter-modality registration between sMRI images and ASL images. In
order to implement these preprocessing steps, the popular SPM [38]
and FSL [39] toolboxes are utilized. Also, the IBA-SPM toolbox [40]
are further incorporated to realize the segmentation of eight brain
regions (i.e. left/right hippocampus, left/right parahippocampal gyrus,
left/right putamen and left/right thalamus), whose local features are
extracted and utilized in diverse shallow learning-based diagnosis tools.
Details of them are introduced in Section 4.4.

4.2. Experimental settings

As mentioned above, the new model incorporates both VAE and
GAN to synthesize medical images. Therefore, advantages of rich syn-
thesized images’ details (obtained by GAN) and stable trainings (ob-
4

tained by VAE) can be expected from this new VAE-GAN model. In
order to verify its effectiveness, the new VAE-GAN model is com-
pared with state-of-the-art studies in ASL image synthesis. To be spe-
cific, the locally-constrained WGAN-GP ensemble introduced in [33]
and the WGAN-GP+Glow model proposed in [35] are implemented
and compared. Besides, several GAN-based image synthesis models
including CycleGAN [42], WGAN-GP [37], and LSGAN [41] are fur-
ther compared for the comprehensive purpose. Also, the well-known
ResNet [43]and CNN [44] models from the ‘‘Non-flow&GAN-based’’
category are also implemented and compared in this experiment. It is
valuable to point out that, parameters of these compared methods are
determined through trial-and-errors for optimal synthesis performance,
and details of them are elaborated in Table 1.

Moreover, implementation details of the new VAE-GAN model in-
troduced in this study are described as follows. In order to make the
optimization of the new model converge more efficiently, an adaptive
learning rate scheme is incorporated. The initial learning rate of the
generator is set as 𝐿𝑜𝐺 = 1𝑒−06, and the initial learning rate of the
discriminator is set as 𝐿𝑜𝐷 = 3𝑒−08. When 𝑒𝑝𝑜𝑐ℎ = 𝑖, the learning
rate of the generator changes into 𝐿𝑟𝐺 = 𝐿𝑜𝐺 × 0.95(𝑖|1000), and the
learning rate of the discriminator becomes 𝐿𝑟𝐷 = 𝐿𝑜𝐷 ×0.95(𝑖|1000). The
total epoch equals to 10 000, and the batch size is set as 8. In order to
realize the optimization, the RMSprop [45] optimizer is incorporated,
and the average training time of the new model is around 12 h. It is
also valuable to mention that, all above-mentioned parameters of the
new VAE-GAN model is also determined through trial-and-errors for
obtaining optimal synthesis performance. All experiments in this study
are carried out based on a workstation mainly equipped with the Intel
Xeon Silver 4110 CPU, 128G RAM, two NVIDIA Titan V GPU cards.
The programming is realized via PyTorch 3.7.0 based on the CentOS
7.4 operating system.

4.3. Qualitative evaluations

Fig. 4 illustrates an example of synthesized ASL images obtained
by all compared methods based on one patient from the first dataset
of this study. There are 9 rows in Fig. 4, in which the first row
includes real ASL images obtained by actual scanning (i.e., utilized
as the golden standard) and the rest 8 rows demonstrate synthesized
ASL images obtained by different compared methods (i.e., Rows 2: the
new VAE-GAN model, 3: locally-constrained WGAN-GP ensemble [33],
4: WGAN-GP+Glow [35], 5: CycleGAN [42], 6: WGAN-GP [37], 7:
LSGAN [41], 8: ResNet [43], and 9: CNN [44]). Furthermore, Column
I in Fig. 4 demonstrates example 2𝐷 slices of synthesized ASL images
(Rows 2–9) / real ASL images (Row 1). Column II in Fig. 4 indicates
difference maps that are calculated as the voxel-wise absolute differ-
ence between synthesized ASL images (Column I of Rows 2–9) and their
corresponding golden standard (Column I of Row 1). Several qualitative
conclusions can be drawn here. First. the ideal case of difference maps
certainly belongs to Column II of Row 1, in which no difference exists
when subtracting the golden standard from itself. Second, difference
maps of VAE-GAN (Row 2) are significantly less obvious than those
of other rows, which suggests that synthesized ASL images of the new
VAE-GAN model are the most similar towards the golden standard
with respect to all compared methods. Moreover, the visualization
of example synthesized ASL images obtained by the new VAE-GAN
method from real sMRI images of one patient in the first dataset is
illustrated in Fig. 5. It is necessary to mention that, the visualization
is realized by the 3D slicer software with the grayscale rendering.

4.4. Quantitative evaluations

In this section, synthesized ASL images obtained from all compared
methods are incorporated together with their corresponding real sMRI
images, to fulfill the important multi-modal dementia diseases diag-
nosis task. Generally, the main purpose is to accurately differentiate
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Table 1
Implementation details of all compared synthesis methods in this study.

No. Models Refs. Details in implementations Epoch Learning Batch Patch Parameters
rate size number (1𝑀 = 106)

1 WGAN-GP+Glow [35] 8 flows; each flow contains 8 bijections; 5 layers in the generator; 10 000 0.0001 32 64 × 64 × 21 152.37M
3 layers in the discriminator; the weight of the gradient penalty is 10.

2 Locally-constrained [33] 8 local regions; the weight of the regional constraint is [3, 5, 5, 5, 5, 5, 2, 2];
WGAN-GP ensemble 5 layers in the generator; 3 layers in the discriminator; 50 0.0002 4 64 × 64 × 21 399.05M

The weight of the gradient penalty is 10;
Weights of all local constraints are 0.05.

3 WGAN-GP [37] 5 layers in the generator; 3 layers in the discriminator; 200 0.0002 4 64 × 64 × 21 144.04M
the weight of the gradient penalty is 10.

4 LSGAN [41] 5 layers in the generator; 5 layers in the discriminator. 200 0.0002 4 64 × 64 × 21 0.51M

5 CycleGAN [42] 9 layers in the generator; 5 layers in the discriminator. 200 0.0002 4 64 × 64 × 21 28.55M

6 ResNet [43] 19 layers. 200 0.0002 4 64 × 64 × 21 0.24M

7 CNN [44] 7 layers. 200 0.0002 4 64 × 64 × 21 0.20M
Table 2
Statistics on accuracies of dementia diseases diagnosis based on real sMRI images and synthesized ASL images obtained from all compared synthesis methods based on the first
dataset (i.e., accuracies of dementia diseases diagnosis based on NCI/MCI/AD patients are described via colors of blue, orange, and green in corresponding entries).

Model sMRI sMRI + synthesized ASL sMRI + synthesized ASL sMRI + synthesized ASL sMRI + synthesized ASL
(as the baseline) by Ours by Locally-constrained by WGAN-GP + Glow by CNN

WGAN-GP ensemble

LR 0.8771 ± 0.0310 0.9343 ± 0.0286 0.9171 ± 0.0278 0.8871 ± 0.0369 0.9057 ± 0.0213

0.8307 1.0000 0.4057 0.9579 1.0000 0.5556 0.9234 1.0000 0.5238 0.8538 1.0000 0.4290 0.8752 1.0000 0.5238

SVM 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517

1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

SVR 0.9314 ± 0.0277 0.9343 ± 0.0292 0.9314 ± 0.0277 0.9371 ± 0.0302 0.9314 ± 0.0226

0.9334 1.0000 0.5238 0.9579 1.0000 0.5556 0.9607 1.0000 0.5317 0.9456 1.0000 0.5000 0.9334 1.0000 0.5238

Ranking 0.8971 ± 0.0517 0.9086 ± 0.0224 0.9000 ± 0.0508 0.8971 ± 0.0517 0.8971 ± 0.0517

1.0000 1.0000 0.0000 0.8142 1.0000 0.6984 1.0000 1.0000 0.0159 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

CNN-2 0.4740 ± 0.0783 0.4704 ± 0.0650 0.4602 ± 0.0513 0.4930 ± 0.0841 0.4676 ± 0.0427

0.3333 0.6486 0.1316 0.2955 0.6811 0.0263 0.3863 0.5784 0.1316 0.4545 0.5946 0.1316 0.5076 0.5081 0.1316

CNN-20 0.4820 ± 0.0607 0.5296 ± 0.0077 0.5158 ± 0.0679 0.4880 ± 0.0503 0.5014 ± 0.0603

0.3561 0.6378 0.1842 0.4697 0.6324 0.1316 0.5227 0.5838 0.1579 0.5984 0.4810 0.1316 0.3030 0.7189 0.1316

ResNet-56 0.4900 ± 0.0602 0.4873 ± 0.0551 0.4664 ± 0.0417 0.4830 ± 0.0429 0.4648 ± 0.0467

0.4697 0.6054 0.0000 0.4848 0.5730 0.1579 0.4848 0.5243 0.1316 0.5757 0.4864 0.1579 0.5000 0.5135 0.1053

Average 0.7212 0.7374 0.7269 0.7261 0.7236

0.7033 0.8417 0.1779 0.7114 0.8409 0.3036 0.7540 0.8124 0.2132 0.7754 0.7946 0.1929 0.7313 0.8201 0.2023

Boost 0.00% +42.41% +14.92% +12.83% +6.28%

Models sMRI + real ASL sMRI + synthesized ASL sMRI + synthesized sMRI + synthesized sMRI + real ASL
ASL by ResNet ASL by WGAN-GP ASL by LSGAN ASL by CycleGAN (as the golden standard)

LR 0.8971 ± 0.0330 0.8829 ± 0.0263 0.8714 ± 0.0309 0.8886 ± 0.0240 0.8914 ± 0.0269

0.9034 1.0000 0.3810 0.8333 1.0000 0.4057 0.8327 1.0000 0.3437 0.8693 1.0000 0.3095 0.8671 1.0000 0.4444

SVM 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517 0.8971 ± 0.0517

1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

SVR 0.8971 ± 0.0517 0.9314 ± 0.0270 0.9257 ± 0.0238 0.9229 ± 0.0289 0.9371 ± 0.0216

1.0000 1.0000 0.0000 0.9334 1.0000 0.5238 0.9482 1.0000 0.4286 0.9497 1.0000 0.4444 0.9456 1.0000 0.5000

Ranking 0.9029 ± 0.0482 0.9000 ± 0.0508 0.8971 ± 0.0517 0.8971 ± 0.0517 0.9000 ± 0.0492

1.0000 1.0000 0.0238 0.9034 1.0000 0.2857 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0079

CNN-2 0.4930 ± 0.0683 0.4060 ± 0.0280 0.4410 ± 0.0388 0.4540 ± 0.0486 0.5634 ± 0.0589

0.3712 0.6811 0.0000 0.4015 0.4864 0.0263 0.4318 0.5351 0.0263 0.4697 0.5351 0.0000 0.5530 0.6811 0.0263

CNN-20 0.4648 ± 0.0386 0.4060 ± 0.0174 0.4410 ± 0.0459 0.5200 ± 0.0491 0.5718 ± 0.0214

0.2955 0.6649 0.0789 0.3712 0.4864 0.1316 0.3712 0.5567 0.1316 0.4545 0.6486 0.0789 0.3939 0.8054 0.0526

ResNet-56 0.5014 ± 0.0708 0.4340 ± 0.0377 0.4220 ± 0.0132 0.4190 ± 0.0492 0.5549 ± 0.0275

0.4242 0.6324 0.1316 0.4848 0.4810 0.0263 0.4545 0.4594 0.1316 0.3485 0.5459 0.0526 0.4470 0.7189 0.1316

Average 0.7219 0.6939 0.6993 0.7141 0.7594

0.7135 0.8541 0.0879 0.7039 0.7791 0.1999 0.7198 0.7930 0.1517 0.7274 0.8185 0.1265 0.7438 0.8865 0.1661

Boost +1.83% −71.47% −57.33% −18.59% 100%
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Fig. 4. An illustration of synthesized ASL images obtained from all compared methods
based on one patient of the first dataset in this study.

Fig. 5. The visualization of synthesized ASL images obtained by the new VAE-GAN
method from real sMRI images of one patient in the first dataset (i.e., the visualization
is realized by the 3D slicer software with the grayscale rendering.

progressions of dementia diseases (i.e., AD, MCI, NCI). In order to real-
ize the diagnosis, there are 7 diagnosis tools implemented, including
4 shallow learning-based diagnosis tools and 3 deep learning-based
diagnosis tools. Details of them are described as follows.

First, 4 shallow learning-based diagnosis tools include the linear re-
gression (LR), the triple-class SVM (SVM), the support vector regression
(SVR), and the support vector ranking (Ranking). Since hand-crafted
features are usually necessary to be extracted as inputs in shallow
learning-based methods, the 8 segmented regions mentioned in Sec-
tion 4.1 are emphasized and their means as well as standard deviations
are extracted to construct low-level visual features. Also, SVM, SVR,
6

Fig. 6. Architectures of three deep learning-based diagnosis tools utilized in this study
(i.e., from left to right: CNN-2, CNN-20, ResNet-56).

and Ranking are implemented using the SVM-light toolbox [46], and
the Gaussian radial basis function (Gaussian RBF) is adopted as the
non-linear kernel to fulfill the well-known ‘‘kernel trick’’ in these tools.
The Gaussian width is automatically determined via the classic radius
margin bound method [47]. Second, 3 deep learning-based diagnosis
tools are CNN-2, CNN-20, and ResNet-56, whose architectures are illus-
trated in Fig. 6. It can be observed that, all these deep learning-based
diagnosis tools have two-channel inputs, in which one channel is for
inputting sMRI images and the other is for inputting real/synthesized
ASL images. It is also necessary to mention that, when only sMRI is
to be input (i.e., as the baseline in Table 2), only the channel for
incorporating sMRI images is active.

Table 2 demonstrates statistics of accuracies of dementia diseases
diagnosis when incorporating real sMRI images and their corresponding
synthesized ASL images obtained from all compared synthesis methods,
based on the first dataset. Since diagnosis experiments are conducted
following the classic 5-fold cross-validation strategy from the statistical
perspective, the entry (i.e., 𝜇 ± 𝜎) in Table 2 represents the average
accuracy (𝜇) of the 5-fold cross-validation and its corresponding stan-
dard deviation (𝜎). For the two bottom lines ‘‘Average’’ and ‘‘Boost’’ in
Table 2, ‘‘Average’’ calculates the mean accuracy from all diagnosis out-
comes in each individual column of Table 2, and ‘‘Boost’’ indicates the
percentage of diagnosis performance improvement. Since the diagnosis
of only using real sMRI images is considered as the baseline (i.e., the
second column of Table 2) and the diagnosis of using both real sMRI
images and real ASL images is regarded as the golden standard (i.e., the
last column of Table 2), entries in ‘‘Boost’’ are quantitatively calculated
as: Boost = mean of each individual method−mean of the baseline

mean of the golden standard−mean of the baseline × 100%.
It can be summarized from Table 2 that, synthesized ASL images

obtained by the new VAE-GAN model are capable to provide the highest
diagnosis performance improvement, with the largest increasing per-
centage of +42.41% among all compared synthesis methods. Besides the
new VAE-GAN model, the locally-constrained WGAN-GP ensemble and
WGAN-GP+Glow are two other methods that are capable to improve
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Table 3
Statistics on accuracies of dementia diseases diagnosis based on real sMRI images and
synthesized ASL images obtained by the new VAE-GAN model based on the ADNI-1
dataset.

Model sMRI sMRI + synthesized
ASL by VAE-GAN

LR 0.7555 ± 0.0491 0.7545 ± 0.0525
SVM 0.8090 ± 0.0369 0.8090 ± 0.0369
SVR 0.8545 ± 0.0432 0.8636 ± 0.0389
Ranking 0.8090 ± 0.0369 0.8090 ± 0.0369
CNN-2 0.7876 ± 0.0365 0.8160 ± 0.0526
CNN-20 0.8984 ± 0.0430 0.9000 ± 0.0447
ResNet-56 0.8640 ± 0.0873 0.8560 ± 0.0404

Average 0.8254 0.8297
Boost 11.26%

the diagnosis performance after incorporating their synthesized ASL
images. For other compared methods, their synthesized ASL images
unfortunately deteriorate the diagnosis performance, whose results are
lower than the baseline.

In Fig. 7, examples of synthesized ASL images obtained by Cycle-
GAN, LSGAN, and WGAN-GP are illustrated. It can be noticed that
these synthesized outcomes have shortcomings of partial volume effects
(Fig. 7-a), blurring (Fig. 7-b), noisy data (Fig. 7-c), etc. The quality
of these synthesized ASL images is not satisfactory. Hence, diagnosis
performance based on them is not satisfactory, either. Since the non-
linear mapping from structural MRI to ASL images should be implicitly
represented by the deep learning model whose generalization capability
can be suggested by its hyper-parameters, models with significantly
less number of hyper-parameters (e.g., 0.51M for LSGAN) may not
be capable to implicitly represent the above non-linear mapping well.
Thus, the synthesis performance as well as its corresponding diagnosis
performance based on synthesized data will be deteriorated therein.

Moreover, after incorporating synthesized ASL images together with
their corresponding original sMRI images in the ADNI-1 dataset, the
accuracy of dementia diseases diagnosis can be significantly improved
as well. Table 3 lists statistics on accuracies of dementia diseases
diagnosis using real sMRI images and synthesized ASL images obtained
by the new VAE-GAN model, based on the ADNI-1 dataset. Since no
real ASL images exist in the ADNI-1 dataset, no golden standards can
be referred to. However, an absolute increase of 0.043 (i.e., 0.8297 −
0.8254 = 0.0043) in the average accuracy can be obtained, which brings
about approximately +11.26% performance improvement in Table 3
(i.e., it is calculated proportional to (0.7374−0.7212) = 0.0162 of the new
VAE-GAN model that brings about +42.41% performance improvement
based on the first dataset in Table 2). Hence, incorporating synthesized
ASL images obtained from the new VAE-GAN model is also beneficial to
improve the dementia diseases diagnosis, compared with only adopting
sMRI images, in the ADNI-1 dataset.

5. Conclusions

In this study, a new GAN-based model is introduced to fulfill the
valuable ASL image synthesis task. Technically, VAE is incorporated
as the generator of the GAN model. Experiments based on two image-
based dementia datasets suggest that, the new VAE-GAN model outper-
forms other recently proposed state-of-the-arts in ASL image synthesis
as well as other popular image synthesis methods. It is necessary
to point out that, this study is different from other previous related
VAE-GAN studies. For instance, for Kwon et al.’s work in [48], an-
other encoder and code discriminator of the VAE model are further
incorporated besides the discriminator and the generator of the GAN
model. However, ours replaces the generator of the GAN model with
the VAE model. For Sengupta et al.’s work in [49], their input to the
VAE model is random noise, and the VAE model does not replace
any component of the GAN model. Nevertheless, ours utilizes the real
structural MRI images as the input of the VAE model and considers the
7

Fig. 7. The visualization of examples of synthesized ASL images obtained by CycleGAN,
LSGAN, and WGAN-GP based on patients of the first dataset (i.e., the visualization is
realized by the 3D slicer software with the grayscale rendering.

VAE model as the generator of the GAN model. Hence, the difference
between these related studies and the new method proposed in this
study is significant. Future efforts will be incorporated to investigate
VAE-GAN ensemble models for ASL image synthesis. Also, new model
architectures including the scale-estimated deep networks [50] will be
investigated for the ASL image synthesis task.
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